
Sergi Delgado Segura
Bitcoin Network Layer and Information Propagation

sr_gi

WHAT ARE WE GOING TO COVER?

Differences between client/server and
peer-to-peer paradigms

How a new node joins the network

• How it learns about the network

• How others learn about it

Actors and their role in the network

The gossip protocol

Data propagation

• Transactions and blocks

• 0-conf and double-spending

Node misbehavior

Network based attacks

Network topology

We will use Bitcoin as an example when explaining
how certain parts of the network work. However, the
same mechanisms apply to most of the existing
cryptocurrencies with slight modifications (some times
even without any).

Also keep in mind that for most things within
cryptocurrencies there is no formal specification but
the live code. Therefore some details may change in
the near future.

BEFORE WE START

Introduction

Classic paradigm where actors are split into clients and servers

Servers:

• serve specific resources upon request

• can also provide different types of services

CLIENT-SERVER PARADIGM (1/2)

Clients:

• resource/service requesters

• do not share resources or provide any service

Clients initiate the communication and need to know the server endpoint

Classical examples: WWW, DNS, Email, etc

CLIENT-SERVER PARADIGM (2/2)

All actors (peers) are equal and have both client and server capabilities

Services / resources can be shared between several peers or found in a single
location

Each peer can choose what to serve/request

Quite usual paradigm for distributed file sharing (e.g: BitTorrent)

Usual problems: Bootstrapping and file searching

PEER-TO-PEER (P2P) PARADIGM

How do you find peers when you run a new node in the network?

P2P BOOTSTRAPPING

How do you find peers when you run a new node in the network?

How do peers announce their presence in the network?

P2P BOOTSTRAPPING

A

PEER DISCOVERY?

A

PEER DISCOVERY?

A

PEER DISCOVERY?

A

Is someone there?

PEER DISCOVERY?

A

PEER DISCOVERY?

A **tumbleweed**

PEER DISCOVERY?

A

**tum
blew

eed**

PEER DISCOVERY?

A **tumbleweed**

PEER DISCOVERY?

A **
tu

m
bl

ew
ee

d*
*

PEER DISCOVERY?

A **tumbleweed**

PEER DISCOVERY?

A

PEER DISCOVERY?

A

I need to find
 some peers

PEER DISCOVERY?

How do you find peers when you run a new node in the network?

How do peers announce their presence in the network?

P2P BOOTSTRAPPING

How do you find peers when you run a new node in the network?

How do peers announce their presence in the network?

Hardcoded trusted addresses / IRC bootstrapping / Trusted DNS seeds /
etc

P2P BOOTSTRAPPING

How to identify what other nodes are sharing (who knows what)?

How are files served?

P2P FILE SHARING (1/2)

How to identify what other nodes are sharing (who knows what)?

How are files served?

Announce / Request

P2P FILE SHARING (1/2)

Request paradigm: Files are requested by peers, so the network needs a
lookup protocol to identify who knows what (e.g: DHT, trackers, etc)

Announce paradigm: Files are announced to peers, which will decide whether
they would like a copy or not. No lookup protocol is required (e.g: gossip
protocols)

P2P FILE SHARING (2/2)

Request paradigm: Files are requested by peers, so the network needs a
lookup protocol to identify who knows what (e.g: DHT, trackers, etc)

Announce paradigm: Files are announced to peers, which will decide whether
they would like a copy or not. No lookup protocol is required (e.g: gossip
protocols)

What paradigm do cryptocurrency networks follow?

P2P FILE SHARING (2/2)

Request paradigm: Files are requested by peers, so the network needs a
lookup protocol to identify who knows what (e.g: DHT, trackers, etc)

Announce paradigm: Files are announced to peers, which will decide whether
they would like a copy or not. No lookup protocol is required (e.g: gossip
protocols)

What paradigm do cryptocurrency networks follow? Announce

P2P FILE SHARING (2/2)

A

REQUEST PARADIGM (BitTorrent)

A T

Tracker

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

A T

Tracker
Hey, where can I find the

Bitcoin whitepaper?

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

A T

Tracker
Hey, where can I find the

Bitcoin whitepaper?

Check here!

bitcoin_wp.torrent

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

A

bitcoin_wp.torrent

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

• Check the .torrent file

A

bitcoin_wp.torrent

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

• Check the .torrent file

A

bitcoin_wp.torrent

bitcoin_wp001.pdf.part : P0
bitcoin_wp002.pdf.part : P1
bitcoin_wp003.pdf.part : P2

…
bitcoin_wp00N.pdf.part : PN

REQUEST PARADIGM (BitTorrent)

• Get file information from a
tracker

• Check the .torrent file

• Connect to peers and
retrieve the file parts

A

bitcoin_wp.torrent

bitcoin_wp001.pdf.part : P0
bitcoin_wp002.pdf.part : P1
bitcoin_wp003.pdf.part : P2

…
bitcoin_wp00N.pdf.part : PN

REQUEST PARADIGM (BitTorrent)

Why would a request paradigm (like the one we just saw) not work for
cryptocurrency networks?

ANNOUNCE VS REQUEST

Why would a request paradigm (like the one we just saw) not work for
cryptocurrency networks?

New items (transactions and blocks) can be created by others, so we
can’t know about them if they are not offered

ANNOUNCE VS REQUEST

Why would a request paradigm (like the one we just saw) not work for
cryptocurrency networks?

New items (transactions and blocks) can be created by others, so we
can’t know about them if they are not offered

What information should a node know about the system?

ANNOUNCE VS REQUEST

Why would a request paradigm (like the one we just saw) not work for
cryptocurrency networks?

New items (transactions and blocks) can be created by others, so we
can’t know about them if they are not offered

What information should a node know about the system?

A (full) node needs all the information in order to validate new items

ANNOUNCE VS REQUEST

Node bootstrapping and peer discovery

A

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

S0Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0

S1

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0

S1Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0

S1Hey! Send me some peers

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0 S1

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0 S1 …

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0 S1 … Sn

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0 S1 … Sn

Hey! Send me some peers Sn

DNS Server

BITCOIN PEER DISCOVERY

A

S0 S1 … Sn

DNS Seeds

S0 S1S0 S1 … Sn

Sn
Here you have!

DNS Server

P0 P1 … Pn

Peer list

BITCOIN PEER DISCOVERY

vSeeds.emplace_back("seed.bitcoin.sipa.be"); // Pieter Wuille
vSeeds.emplace_back("dnsseed.bluematt.me"); // Matt Corallo
vSeeds.emplace_back("dnsseed.bitcoin.dashjr.org"); // Luke Dashjr
vSeeds.emplace_back("seed.bitcoinstats.com"); // Christian Decker
vSeeds.emplace_back("seed.bitcoin.jonasschnelli.ch"); // Jonas Schnelli
vSeeds.emplace_back("seed.btc.petertodd.org"); // Peter Todd
vSeeds.emplace_back("seed.bitcoin.sprovoost.nl"); // Sjors Provoost

BITCOIN DNS SERVER HOSTS

vSeeds.emplace_back("seed.bitcoin.sipa.be"); // Pieter Wuille
vSeeds.emplace_back("dnsseed.bluematt.me"); // Matt Corallo
vSeeds.emplace_back("dnsseed.bitcoin.dashjr.org"); // Luke Dashjr
vSeeds.emplace_back("seed.bitcoinstats.com"); // Christian Decker
vSeeds.emplace_back("seed.bitcoin.jonasschnelli.ch"); // Jonas Schnelli
vSeeds.emplace_back("seed.btc.petertodd.org"); // Peter Todd
vSeeds.emplace_back("seed.bitcoin.sprovoost.nl"); // Sjors Provoost

static SeedSpec6 pnSeed6_main[] = {

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x02,0x84,0x64,0x2f}, 8333},

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x05,0x01,0x61,0x04}, 8333},

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x05,0x27,0xae,0x74}, 8333},

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x05,0x2d,0x4f,0x0e}, 8333},

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x05,0x35,0x10,0x85}, 8333},

 {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff,0xff,0x05,0x65,0x8b,0xa6}, 8333},

If DNS seeds do not work,
a node will try to connect

to a hardcoded list of
nodes (fixed seed)

…

BITCOIN DNS SERVER HOSTS

A node bootstraps with no known peers

First it tries to query a list of well known DNS seeds

As a last resource it uses a hardcoded seed

BITCOIN P2P BOOTSTRAPPING (RECAP)

B
A

C

POPULATING THE PEERS DATABASE

• A connects a subset of peers from the ones
learned from the DNS seeds

B
A

C

POPULATING THE PEERS DATABASE

• A connects a subset of peers from the ones
learned from the DNS seeds

• A requests more peers to his neighbors
(getaddr)

B
A getaddr

getaddr
C

POPULATING THE PEERS DATABASE

• A connects a subset of peers from the ones
learned from the DNS seeds

• A requests more peers to his neighbors
(getaddr)

• Peers reply with some addresses they know
about (addr, up to 1000 addresses)

B
A

peer_li
st_c

peer_list_b

C

POPULATING THE PEERS DATABASE

• A connects a subset of peers from the ones
learned from the DNS seeds

• A requests more peers to his neighbors
(getaddr)

• Peers reply with some addresses they know
about (addr, up to 1000 addresses)

• A adds the new addresses to its peers
database (or updates the existing ones)B

A

peer_li
st_c

peer_list_b

C

POPULATING THE PEERS DATABASE

• A connects a subset of peers from the ones
learned from the DNS seeds

• A requests more peers to his neighbors
(getaddr)

• Peers reply with some addresses they know
about (addr, up to 1000 addresses)

• A adds the new addresses to its peers
database (or updates the existing ones)

• The database is known as the addrman

B
A

peer_li
st_c

peer_list_b

C

A’s addrman = A’s addrman U peer_list_c U peer_list_b

POPULATING THE PEERS DATABASE

A

P0 P1 … Pn

Peer database (addrman)

INCOMING/OUTGOING CONNECTIONS

• During bootstrap, a node will start some
outgoing connections with peers it has learnt
about (8 by default) and tries to maintain themA

P0 P1 … Pn

Peer database (addrman)

INCOMING/OUTGOING CONNECTIONS

• During bootstrap, a node will start some
outgoing connections with peers it has learnt
about (8 by default) and tries to maintain them

• A node will also accept some incoming
connections (117 by default)

A

P0 P1 … Pn

Peer database (addrman)

INCOMING/OUTGOING CONNECTIONS

How does a node announce his presence to the rest of the network?

ADDRESS PROPAGATION (1/2)

How does a node announce his presence to the rest of the network?

A B

P0 … Pn

Peer database (addrman)

ADDRESS PROPAGATION (1/2)

How does a node announce his presence to the rest of the network?

A B
Let’s connect!

(version)

P0 … Pn

Peer database (addrman)

ADDRESS PROPAGATION (1/2)

How does a node announce his presence to the rest of the network?

A B
Let’s connect!

(version)

P0 … Pn

Peer database (addrman)

OK!
(verack)

ADDRESS PROPAGATION (1/2)

How does a node announce his presence to the rest of the network?

A B
Let’s connect!

(version)

P0 … Pn

Peer database (addrman)

PA

OK!
(verack)

ADDRESS PROPAGATION (1/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K

E

H

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K

E

H

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K
Addr(A

)

E

H

• B picks a random subset of its
neighbors and relays A’s address

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K
Addr(A

)

Ad
dr

(A
)

E

H

• B picks a random subset of its
neighbors and relays A’s address

• The nodes picked by B pick a random
subset of their neighbors and relay A’s
address

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K
Addr(A

)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

• B picks a random subset of its
neighbors and relays A’s address

• The nodes picked by B pick a random
subset of their neighbors and relay A’s
address

• And so on and so forth…

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A

B

C

J F

G

I

D

K
Addr(A

)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

Ad
dr

(A
)

• B picks a random subset of its
neighbors and relays A’s address

• The nodes picked by B pick a random
subset of their neighbors and relay A’s
address

• And so on and so forth…

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

…

A

B

C

J F

G

I

D

K
Addr(A

)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

Ad
dr

(A
)

• B picks a random subset of its
neighbors and relays A’s address

• The nodes picked by B pick a random
subset of their neighbors and relay A’s
address

• And so on and so forth…

ADDRESS PROPAGATION (2/2)

…

A

B

C

J F

G

I

D

Addr(A
)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

Ad
dr

(A
) K

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

• The address will eventually be spread
throughout the network…

A

B

C

J F

G

I

D

Addr(A
)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

Ad
dr

(A
) K

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

• The address will eventually be spread
throughout the network

• Nodes learning about the new peer
will add it to their peers database

…

A

B

C

J F

G

I

D

Addr(A
)

Ad
dr

(A
)

Addr(A
)

Addr(A)

E

H

Ad
dr

(A
) K

ADDRESS PROPAGATION (2/2)

How does a node announce his presence to the rest of the network?

A node learns about the peers in the network by asking other peers (after
an initial bootstrap)

A node maintains a database of all the peers he has heard of and keeps
populating it / updating it

A node initiates (and maintain) some outgoing connects and also accept
some incoming ones

The address of a new node is propagated thought the network so all
peers can know about it

CONNECTIONS (RECAP)

Actors and purpose
(what, who, why, and how)

There are two main items that peers share in a cryptocurrency P2P network:
transactions and blocks

From: Ford To: Arthur 42

THE DATA (WHAT?)

There are two main roles followed by nodes: peers
and miners

THE ACTORS (WHO?) (1/2)

There are two main roles followed by nodes: peers
and miners

(Normal) Peers:

THE ACTORS (WHO?) (1/2)

There are two main roles followed by nodes: peers
and miners

(Normal) Peers:

• Can create transactions that spend some of
their bitcoins From: Alice To: Bob 5

THE ACTORS (WHO?) (1/2)

There are two main roles followed by nodes: peers
and miners

(Normal) Peers:

• Can create transactions that spend some of
their bitcoins

• Do verify the correctness of received
transactions and blocks (from other peers)

From: Alice To: Bob 5

THE ACTORS (WHO?) (1/2)

There are two main roles followed by nodes: peers
and miners

(Normal) Peers:

• Can create transactions that spend some of
their bitcoins

• Do verify the correctness of received
transactions and blocks (from other peers)

• Do relay valid transactions and blocks
(created by them or obtained from other peers)

From: Alice To: Bob 5

A B
txA

THE ACTORS (WHO?) (1/2)

THE ACTORS (WHO?) (2/2)

There are two main roles followed by nodes: peers
and miners

THE ACTORS (WHO?) (2/2)

There are two main roles followed by nodes: peers
and miners

Miners:

THE ACTORS (WHO?) (2/2)

There are two main roles followed by nodes: peers
and miners

Miners:

• Can everything a peer could do*

THE ACTORS (WHO?) (2/2)

There are two main roles followed by nodes: peers
and miners

Miners:

• Can everything a peer could do*

• Can generate blocks through a process
known as mining

THE ACTORS (WHO?) (2/2)

There are two main roles followed by nodes: peers
and miners

Miners:

• Can everything a peer could do*

• Can generate blocks through a process
known as mining

* There are specific purpose miners (ASICS) that only perform mining

Peers relay transactions in order to reach miners, which will include such
transactions in future blocks

Miners generate blocks to obtain their reward (and also the transactions fees)

Blocks are relayed to ultimately achieve a consistent view of the blockchain

Peers validate transactions and blocks (and relay only the valid ones) in order
to avoid cheating (e.g: double-spending, coin forgery, etc)

THE PURPOSE (WHY?)

Items (transactions and blocks) are shared
between peers in a push manner

A B

Announce paradigm

THE GOSSIP PROTOCOL (HOW?)

Items (transactions and blocks) are shared
between peers in a push manner

When a peer receives / generates a new item
he announce it to his neighbors (announce)

A B

inv(h(tx
n))announce

Announce paradigm

THE GOSSIP PROTOCOL (HOW?)

Items (transactions and blocks) are shared
between peers in a push manner

When a peer receives / generates a new item
he announce it to his neighbors (announce)

Upon receiving an announce of an item, a
node that does not know about it will request
the item back to the announcer (request)

A B

inv(h(tx
n))

get_data
(h(txn

))

announce

request

Announce paradigm

THE GOSSIP PROTOCOL (HOW?)

Items (transactions and blocks) are shared
between peers in a push manner

When a peer receives / generates a new item
he announce it to his neighbors (announce)

Upon receiving an announce of an item, a
node that does not know about it will request
the item back to the announcer (request)

Upon receiving a request of a known item, a
node will reply back with it (deliver)

A B

inv(h(tx
n))

get_data
(h(txn

))

tx(tx
n)

announce

request

deliver

Announce paradigm

THE GOSSIP PROTOCOL (HOW?)

Information propagation

A

INFORMATION PROPAGATION (1/3)

AB

INFORMATION PROPAGATION (1/3)

AB
txn

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

Yes!

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

Yes! • Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

No! • Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Do I already
know about txn?

txn

No! • Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB
txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

No!

txn

• Known transaction will be
rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

No!

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

Yes!

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB

Is txn a valid
transaction?

Yes!

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB

txn

. . .

A’s memory
(mempool)

txn-1

tx0

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB
. . .

A’s memory
(mempool)

txn-1

tx0

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

INFORMATION PROPAGATION (1/3)

AB
. . .

A’s memory
(mempool)

txn-1

tx0

txn

• Known transaction will be
rejected

• Invalid transaction will also
be rejected

• Valid (new) transactions will
be kept in memory
(mempool)

INFORMATION PROPAGATION (1/3)

A

INFORMATION PROPAGATION (2/3)

A

B

INFORMATION PROPAGATION (2/3)

A

B

C

INFORMATION PROPAGATION (2/3)

A

B

C D

INFORMATION PROPAGATION (2/3)

A

B

C D

…

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A BC

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A B

inv(h(tx
n))announce

C

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A B

inv(h(tx
n))

get_data
(h(txn

))

announce

request

C

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A B

inv(h(tx
n))

get_data
(h(txn

))

tx(tx
n)

announce

request

deliver

C

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A B

inv(h(tx
n))

get_data
(h(txn

))

tx(tx
n)

announce

request

deliver

D

INFORMATION PROPAGATION (2/3)

A

B

C D

…

Z

A B

inv(h(tx
n))

get_data
(h(txn

))

tx(tx
n)

announce

request

deliver

Z

INFORMATION PROPAGATION (2/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

• And so on and so forth until all
the nodes are reached

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

• And so on and so forth until all
the nodes are reached

• Recall that a node will reject a
transaction if it has already learnt
about it from any of its neighbors

INFORMATION PROPAGATION (3/3)

A

B

C D

…
Z

• And so on and so forth until all
the nodes are reached

• Recall that a node will reject a
transaction if it has already learnt
about it from any of its neighbors

• The same procedure applies for
blocks

INFORMATION PROPAGATION (3/3)

The bigger the network the more it takes for an item to propagate (this can be
counterintuitive)

Long propagation times (for blocks) imply bigger likelihood of forking the
blockchain

IMPLICATIONS

The bigger the network the more it takes for an item to propagate (this can be
counterintuitive)

Long propagation times (for blocks) imply bigger likelihood of forking the
blockchain

Christian Decker and Roger Wattenhofer

Information propagation in the Bitcoin network
https://ieeexplore.ieee.org/document/6688704

IMPLICATIONS

source: charts.satoshi.uab.cat

DATA PROPAGATION TIMES (TESTNET)

http://charts.satoshi.uab.cat/d/Bl_mfYDmk/bitcoin-testnet?orgId=1&from=1546952447569&to=1546970950974

source: https://dsn.tm.kit.edu/bitcoin/videos.html

MORE ABOUT PROPAGATION TIMES

https://dsn.tm.kit.edu/bitcoin/videos.html

How can blocks propagate faster than transactions if the former are bigger
than the later?

PROPAGATION DELAYS (1/2)

How can blocks propagate faster than transactions if the former are bigger
than the later?

• Transactions are accumulated in buffers and forwarded in batches to break
the link between first relayer and origin of a transaction

PROPAGATION DELAYS (1/2)

How can blocks propagate faster than transactions if the former are bigger
than the later?

• Transactions are accumulated in buffers and forwarded in batches to break
the link between first relayer and origin of a transaction

• The propagation of blocks is not delayed, in order to reach full network
coverage as soon as possible

PROPAGATION DELAYS (1/2)

But blocks are way bigger than transactions, how can they be propagated so
fast!?

PROPAGATION DELAYS (2/2)

But blocks are way bigger than transactions, how can they be propagated so
fast!?

• Fast relay networks on top of Bitcoin exists (Falcon, FIBRE, etc) to enhance
the propagation time of blocks

PROPAGATION DELAYS (2/2)

But blocks are way bigger than transactions, how can they be propagated so
fast!?

• Fast relay networks on top of Bitcoin exists (Falcon, FIBRE, etc) to enhance
the propagation time of blocks

• Miners use such networks to ensure minimal propagation times as well as
ensure being mining on top of the most recent block

PROPAGATION DELAYS (2/2)

Reachable network: all nodes accept
incoming / outgoing connections

Reachable

NETWORK TAXONOMY

Reachable network: all nodes accept
incoming / outgoing connections

Non-reachable: nodes do not accept
incoming connections / cannot be reached
(NAT/firewalls/…) Reachable

Non-reachable

NETWORK TAXONOMY

Reachable network: all nodes accept
incoming / outgoing connections

Non-reachable: nodes do not accept
incoming connections / cannot be reached
(NAT/firewalls/…)

Extended network: nodes use different
protocol to communicate (not always P2P)

Reachable

Non-reachable

Extended

NETWORK TAXONOMY

Nodes misbehavior

Every node maintains a banscore with each of its neighbors

If a node finds that one if its peers is misbehaving, the former will increase the
banscore of the later

If the banscore of a neighbor reaches (or surpasses) its maximum (100 by
default), the node will ban that neighbor for a certain time (24h by default)

The banscore increase depends on how the neighbor is misbehaving

Nodes misbehavior

Examples of banscore increase:

• Not sending a version message as the first message in a handshake (1)

• Sending more than 1000 addresses in a single address message (1)

• Sending more than 50000 ids in a single inventory message (20)

• Sending a transaction with a script too big (100)

src/net_processing.cpp for more

Banscore

0-conf transactions and double-spending

A

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

A
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB txn
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

txn

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

txn

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

AB
. . .

A’s mempool

txn-1

tx0

txn

UNCONFIRMED TRANSACTIONS

• 0-conf transactions / unconfirmed
transactions are those that are not
part of the blockchain (they are
stored in the mempool)

• 0-conf transactions are not covered
by the double-spending protection
offered by the blockchain (they are
not part of it)

• Different nodes can have conflicting
version of the “same transaction”

A

. . .

A’s mempool

txn

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

Is blck x a valid
block?

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

D
blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

blck x

Is any of my known
transactions in blck

x?

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

txn

blck x

txn

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

blck x

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

. . .

A’s mempool

blck x

txn-1

CONFIRMED TRANSACTIONS

The de facto confirmation time is
6 blocks (5 on top of the one
including a certain transaction)

A

DOUBLE-SPENDING TRANSACTIONS (1/2)

A

id = 4F3…ED

DOUBLE-SPENDING TRANSACTIONS (1/2)

A

id = 4F3…ED

Source: 4F3…ED To: Bob

Source: 4F3…ED To: Alice

txB

txB’

DOUBLE-SPENDING TRANSACTIONS (1/2)

A

id = 4F3…ED

Source: 4F3…ED To: Bob

Source: 4F3…ED To: Alice

txB

txB’

DOUBLE-SPENDING TRANSACTIONS (1/2)

A

id = 4F3…ED

Source: 4F3…ED To: Bob

Source: 4F3…ED To: Alice

txB

txB’

DOUBLE-SPENDING TRANSACTIONS (1/2)

A

B

C D

Z

DOUBLE-SPENDING TRANSACTIONS (2/2)

A

B

C D

ZtxB

txB

DOUBLE-SPENDING TRANSACTIONS (2/2)

A

B

C D

ZtxB

txB

tx
B’

txB’

DOUBLE-SPENDING TRANSACTIONS (2/2)

A

B

C D

ZtxB

txB

tx
B’

txB’

• 0-conf transactions should not be
trusted

DOUBLE-SPENDING TRANSACTIONS (2/2)

A

B

C D

ZtxB

txB

tx
B’

txB’

• 0-conf transactions should not be
trusted

• If B accepts txB before it appears in
a block he can be deceived by A

DOUBLE-SPENDING TRANSACTIONS (2/2)

A

B

C D

Z

WHEN THINGS GO SOUTH

A

B

C D

ZtxB

WHEN THINGS GO SOUTH

A

B

C D

ZtxB

txB’

tx
B’

txB’

WHEN THINGS GO SOUTH

A

B

C D

ZtxB

• If A manages to control the network
view of B, A can easily deceive B

txB’

tx
B’

txB’

WHEN THINGS GO SOUTH

A

B

C D

ZtxB

• If A manages to control the network
view of B, A can easily deceive B

• When a node controls the view of
another subset of nodes, the latter is
said to be eclipsed

txB’

tx
B’

txB’

WHEN THINGS GO SOUTH

A

B

C D

ZtxB

• If A manages to control the network
view of B, A can easily deceive B

• When a node controls the view of
another subset of nodes, the latter is
said to be eclipsed

Ethan Heilman, Alison Kendler, Aviv Zohar and Sharon Goldberg

Eclipse Attacks on Bitcoin’s Peer-to-Peer Network

https://www.usenix.org/node/190891

txB’

tx
B’

txB’

WHEN THINGS GO SOUTH

B
txB

ECLIPSE ATTACKS (1/2)

txB’
A

B
txB

ECLIPSE ATTACKS (1/2)

txB’
A

B will be deceived provided:

B
txB

ECLIPSE ATTACKS (1/2)

txB’
A

B will be deceived provided:

• B accepts 0-conf transactions

B
txB

ECLIPSE ATTACKS (1/2)

txB’
A

B will be deceived provided:

• B accepts 0-conf transactions

• A has enough hash power to generate blocks in a reasonable time

B
txB

ECLIPSE ATTACKS (2/2)

txB’

30%

txB

A

70%

B
txB

ECLIPSE ATTACKS (2/2)

txB’

30%

• A does not even need to
hold any mining power

txB

A

70%

B
txB

ECLIPSE ATTACKS (2/2)

txB’

30%

• A does not even need to
hold any mining power

• With the right information
it can participate the
network in the most
beneficial way for her

txB

A

70%

Network topology

Peers are chosen pseudorandomly from the peer database of a node in order
to become neighbors

Peers can be requested from other peers, but no information about whether
the responder is (or has been) a neighbor of any of the provided peers is given

The network topology should mimic a random network

UNKNOWN TOPOLOGY BY DESIGN

Does the network really look random?

INFERRING THE TOPOLOGY

Does the network really look random?

How can we known if we don’t know what the topology looks like?

INFERRING THE TOPOLOGY

Does the network really look random?

How can we known if we don’t know what the topology looks like?

Can we do anything to infer the topology?

INFERRING THE TOPOLOGY

Does the network really look random?

How can we known if we don’t know what the topology looks like?

Can we do anything to infer the topology?

INFERRING THE TOPOLOGY

TESTNET TOPOLOGY

• Several communities can be easily
identified

• The network looks far from a random
graph of similar characteristics

• The topology can be used to identify
undesired centralization

• But also to target some potential
victims (e.g: Eclipse attacks)

TESTNET TOPOLOGY

Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew
Pachulski, Andrew Miller, Bobby Bhattacharjee

TxProbe: Discovering Bitcoin's Network Topology Using Orphan Transactions
https://fc19.ifca.ai/preproceedings/58-preproceedings.pdf

• Several communities can be easily
identified

• The network looks far from a random
graph of similar characteristics

• The topology can be used to identify
undesired centralization

• But also to target some potential
victims (e.g: Eclipse attacks)

