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WHY HAVE A HIDDEN TOPOLOGY?

An open topology could ease different types of attacks:
 [ransaction deanonymization

* Network based attacks (e.g: Eclipse attacks)

The current approach of the Bitcoin Core is to keep it hidden



WHY HAVE AN OPEN TOPOLOGY?

We know nothings about how the network really Is:
* |s the network really decentralized?
* Are there supernodes controlling the network traffic?

* Are there weak spots in the network that can be easily
iIsolated?

Security by obscurity does not seem to proper way to go



THE TOPOLOGY SHOULD LOOK RANDOM

How Bitcoin (Core client) nodes choose their peers?
e Pseudorandomly from the addrman
* 8 outbound connections by default
No pair of nodes in the same /16 (IPv4)

117 inbound connection by default (no IP restriction here)

Bitcoin forks based on the Core client follow the same approach



BACKGROUND

Our inferring technique is based on transaction propagation

We take advantage of how transactions are handled by nodes:
* orphans transactions

* double-spending transactions
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ORPHAN TRANSACTIONS

A transaction is orphan if some of the referenced UTXOs are unknown

ixB S txD

Orphan transaction

They can not be validated, so they are stored Iin a separated data structure known
as MapOrphanTransactions

Transactions in MapOrphanTransactions are NOT forwarded to any node

If the same transactions is offered again to the node (inv message), it will not ask
back for it (getaddr)



DOUBLE-SPENDING TRANSACTIONS

. txB

id = 4F3...ED

txB’
Source: 4F3...ED To: Alice
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A BASIC TOPOLOGY INFERRING TECHNIQUE
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e Choose atarget node
e Create Parent, Marker and Flood transactions
e Send Parent to target and flood to the rest
For every node In the
e Send Marker to target network

e Let Marker propagate

e Request marker back



TXPROBE - COSTS ESTIMATION

For a network like Bitcoin mainnet:
nodes = 10000

time = 8.25 hours

cost = 573210-764280 satoshi (5 sat/byte) =~ $(20-30)



TXPROBE - DATA VALIDATION (TESTNET)

We run 5 Bitcoin Core nodes as ground truth

We define our precision / recall by checking how well can we infer
the ground truth nodes connections

Over 40 trials and with 95% confidence:
e Precision = 100%

* Recall =93.86% - 95.45%



BE - TESTNET TOPOLOGY

precision = 100%
recall = 97.40%
size —» degree

color —» Louvain community
unfolding

Higher community structure
and modularity than random
graph
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QUESTIONS




WHY TESTNET AND NO MAINNET?

* [xProbe is rather invasive: it empties the MapOrphanTransactions
pool of all nodes in the network every round

 We could not measure the implication that such behavior may have
had on the propagation of regular transactions



