TxProbe: Discovering Bitcoin’s Network Topology Using Orphan Transactions

Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Sola, James Litton, Andrew Pachulski, Andrew Miller
and Bobby Bhattacharjee

A
[
sr_gi L\

WHAT DO WE KNOW ABOUT THE TOPOLOGY?

WHAT DO WE KNOW ABOUT THE TOPOLOGY?

Number of nodes and location of them

WHAT DO WE KNOW ABOUT THE TOPOLOGY?

Number of nodes and location of them

GLOBAL BITCOIN NODES
DISTRIBUTION
Reachable nodes as of Thu Feb 07 2019

10:26:44 GMT+0000 (Greenwich Mean Time).

10365 NODES

24-hour charts »

Top 10 countries with their respective number of
reachable nodes are as follow.

RANK COUNTRY NODES
1 United States 2570 (24.79%)
2 Germany 1968 (18.99%)
3 France 689 (6.65%)
4 Netherlands 514 (4.96%) ’
5 China 411 (3.97%) 5
6 Canada 384 (3.70%) ~
7 United Kingdom 355 (3.42%) ®
Y 4),
8 Singapore 321 (3.10%)) '\4 @

9 Russian Federation 277 (2.67%)
10 Japan 228 (2.20%)

Maore (100) »

WHAT DO WE KNOW ABOUT THE TOPOLOGY?

Number of nhodes and location of them

GLOBAL BITCOIN NODES
DISTRIBUTION
Reachable nodes as of Thu Feb 07 2019

10:26:44 GMT+0000 (Greenwich Mean Time).

10365 NODES

24-hour charts »

Top 10 countries with their respecti
reachable nodes are as follow.

RANK COUNTRY NOL

The edges are hidden by design

1 United States 257

2 Germany 196

3 France 689 (6.65% , v

° o @
4 Netherlands 514 (4.96%) ‘. ©-¢ i\()

‘ = 5‘&’
5 China 411 (3.97%) 3
-
6 Canada 384 (3.70%)
p 2
7 United Kingdom 355 (3.42%) .'0/
(A) .

8 Singapore 321 (3.10%) » w > »

9 Russian Federation 277 (2.67%)
10 Japan 228 (2.20%)

Maore (100) »

WHY HAVE A HIDDEN TOPOLOGY?

An open topology could ease different types of attacks:
 [ransaction deanonymization

* Network based attacks (e.g: Eclipse attacks)

The current approach of the Bitcoin Core is to keep it hidden

WHY HAVE AN OPEN TOPOLOGY?

We know nothings about how the network really Is:
* |s the network really decentralized?
* Are there supernodes controlling the network traffic?

* Are there weak spots in the network that can be easily
iIsolated?

Security by obscurity does not seem to proper way to go

THE TOPOLOGY SHOULD LOOK RANDOM

How Bitcoin (Core client) nodes choose their peers?
e Pseudorandomly from the addrman
* 8 outbound connections by default
No pair of nodes in the same /16 (IPv4)

117 inbound connection by default (no IP restriction here)

Bitcoin forks based on the Core client follow the same approach

BACKGROUND

Our inferring technique is based on transaction propagation

We take advantage of how transactions are handled by nodes:
* orphans transactions

* double-spending transactions

TRANSACTION PROPAGATION IN BITCOIN

Valid transaction are stored in mempool .

Transaction in mempool are eventually
propagated throughout the node
neighborhood

TRANSACTION PROPAGATION IN BITCOIN

Valid transaction are stored in mempool .

inV(h(tX)
propagated throughout the node M
Ce

neighborhood

Transaction in mempool are eventually

TRANSACTION PROPAGATION IN BITCOIN

Valid transaction are stored in mempool .

inV(h(tX)
propagated throughout the node M
Ce

Transaction in mempool are eventually

neighborhood

of_datant)
9 ;eques\‘-

TRANSACTION PROPAGATION IN BITCOIN

Valid transaction are stored in mempool .

propagated throughout the node W
Nce

Transaction in mempool are eventually

neighborhood

of_datant)
9 ;eques\‘-

Wait for tx
up to 2 min

TRANSACTION PROPAGATION IN BITCOIN

Valid transaction are stored in mempool . .

Transaction in mempool are eventually
propagated throughout the node

neighborhood
ot datant)
2 request
Wait for tx
up to 2 min

ORPHAN TRANSACTIONS

A transaction is orphan if some of the referenced UTXOs are unknown

ixB S txD

Orphan transaction

They can not be validated, so they are stored Iin a separated data structure known
as MapOrphanTransactions

Transactions in MapOrphanTransactions are NOT forwarded to any node

If the same transactions is offered again to the node (inv message), it will not ask
back for it (getaddr)

DOUBLE-SPENDING TRANSACTIONS

. txB

id = 4F3...ED

txB’
Source: 4F3...ED To: Alice

DOUBLE-SPENDING TRANSACTIONS

id = 4F3...ED

DOUBLE-SPENDING TRANSACTIONS

id = 4F3...ED

DOUBLE-SPENDING TRANSACTIONS

id = 4F3...ED

DOUBLE-SPENDING TRANSACTIONS

id = 4F3...ED

A BASIC TOPOLOGY INFERRING TECHNIQUE

Two nodes Three transactions

Observation tool
(like coinscope)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Two nodes Three transactions

Observation tool
(like coinscope)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Two nodes Three transactions

L@

Observation tool id = 4F3...ED
(like coinscope)

txM

Parent tx Marker tx

Flood tx

A BASIC TOPOLOGY INFERRING TECHNIQUE

Two nodes Three transactions

L@

Observation tool id = 4F3...ED
(like coinscope)

@ Flood tx

txM

Parent tx Marker tx

POSITIVE INFERRING TECHNIQUE

POSITIVE INFERRING TECHNIQUE

POSITIVE INFERRING TECHNIQUE

POSITIVE INFERRING TECHNIQUE

A’'s Mempool

%,

B’s Mempool

%,

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

N
A’'s Mempool /. B’s Mempool
7 A\
’ / @ \ ’

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool

%,

B’s Mempool

%,

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

txP

txF

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

B’s MapOrphanTransactlons

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP txF (1)

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

%,

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

txM (2) %

POSITIVE INFERRING TECHNIQUE

(3)

txM

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

txM (2) %

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

txP (1) txF (1)

B’s MapOrphanTransactions

txM (2) %

POSITIVE INFERRING TECHNIQUE

A’'s Mempool B’s Mempool

B’s MapOrphanTransactions

tx M (2)

txP (1)

NEGATIVE INFERRING TECHNIQUE

A’'s Mempool

%,

B’s Mempool

%,

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

A’s Mempool @ © : MemPOOI

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

A’'s Mempool

%,

B’s Mempool

%,

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

/I

I\

txP (1)

A’'s Mempool B’s Mempool

txF (1)

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

/I

A’'s Mempool B’s Mempool

txP txF (1)

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

/I

I\

txP (1)

A’'s Mempool B’s Mempool

txF (1)

B’s MapOrphanTransactions

%,

NEGATIVE INFERRING TECHNIQUE

/I

I\

txP (1)

A’'s Mempool B’s Mempool

txF (1)

B’s MapOrphanTransactions

txM (2) %

A BASIC TOPOLOGY INFERRING TECHNIQUE

Positive edge inferring Negative edge inferring

I\

N 7 I N ! I
~ P N 7
N 7
A’'s Mempool B’s Mempool
A’'s Mempool B’s Mempool
txP (1) txF (1)
‘ xP | (1) ‘ xF | ()
B's M ti

apOrphanTransactions
txM (2) ‘ txM ‘ (2)

B’s MapOrphanTransactions

%

txM (3)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring
inv(h(txl\/[))

txP (1) ‘

M (2)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring
inv(h(txl\/[))

txP (1) ‘

M (2)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring
inV(h(txM))

ot_datall (M)

—

oooooooooo

txP (1)

M (2)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring

inV(h(txM))

ot_datall (M)

—

A’s Mempool

7
xedge does not exist
B’s Mempool

‘ wxF | (1)

txP (1)

txM 2)

B’s MapOrphanTransactions

%

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring
inv(h(txl\/[))

txP (1) ‘

M (2)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @ . Inferring

oooooooooo

txP (1)

M (2)

A BASIC TOPOLOGY INFERRING TECHNIQUE

Posit @

Inferring

oooooooooo

txP (1)

M (2)

ITS NOT THAT EASY

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

N 7
®/

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

N 7
P B’s MapOrphanTransactions
2,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

N 7
P B’s MapOrphanTransactions
2,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

[e | (1) % | oF | (1)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

‘@\

A’'s Mempool C’s Mempool B’s Mempool
[e | (1) % | oF | (1)
N
N , :
o B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

[e | (1) % | oF | (1)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

[op | () SR L oF | ()

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

[op | () SR L oF | ()

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool

[op | () SR L oF | ()

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
| v | (3)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
| v | (3)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
| v | (3)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
‘ txM ‘ (3) ‘ txM ‘ (4)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
‘ txM ‘ (3) ‘ txM ‘ (4)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
‘ txM ‘ (3) ‘ txM ‘ (4)

B’s MapOrphanTransactions

%,

ITS NOT THAT EASY

Long story short, if you add an additional unconnected node to the
equation it will falil

A’'s Mempool C’s Mempool B’s Mempool
[op | () SR L oF | ()
‘ txM ‘ (3) ‘ txM ‘ (4)

B’s MapOrphanTransactions

| M | (5)

MAKE THIS WORK IN A REAL NETWORK

Isolation Svynchrony Efficiency

& 0(n)

& M ~0<\f>

txP
@ 1 -

MAKE THIS WORK IN A REAL NETWORK

Isolation

SIMPLIFIED TXPROBE

@y

SIMPLIFIED TXPROBE

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

%, % %,

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool

e | (1) [oF] () SRy

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool
| P | (1) | oF | (1) | wF | (1)
| oM | (3)

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool
| P | (1) | oF | (1) | wF | (1)
| oM | (3)

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool
| P | (1) | oF | (1) | wF | (1)
| oM | (3)

C’s MapOrphanTransactions

%,

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool
| P | (1) | oF | (1) | wF | (1)
| oM | (3)

C’s MapOrphanTransactions
‘ txM ‘ (4)

SIMPLIFIED TXPROBE

A’'s Mempool C’s Mempool B’s Mempool
| P | (1) | oF | (1) | wF | (1)
| oM | (3)

C’s MapOrphanTransactions
‘ txM ‘ (4)

TXPROBE - PROTOCOL RECAP

e Choose atarget node

e Create Parent, Marker and Flood transactions
e Send Parent to target and flood to the rest

e Send Marker to target

e Let Marker propagate

e Request marker back

TXPROBE - PROTOCOL RECAP

e Choose atarget node
e Create Parent, Marker and Flood transactions
e Send Parent to target and flood to the rest
For every node In the
e Send Marker to target network

e Let Marker propagate

e Request marker back

TXPROBE - COSTS ESTIMATION

For a network like Bitcoin mainnet:
nodes = 10000

time = 8.25 hours

cost = 573210-764280 satoshi (5 sat/byte) =~ $(20-30)

TXPROBE - DATA VALIDATION (TESTNET)

We run 5 Bitcoin Core nodes as ground truth

We define our precision / recall by checking how well can we infer
the ground truth nodes connections

Over 40 trials and with 95% confidence:
e Precision = 100%

* Recall =93.86% - 95.45%

BE - TESTNET TOPOLOGY

precision = 100%
recall = 97.40%
size —» degree

color —» Louvain community
unfolding

Higher community structure
and modularity than random
graph

CONCLUSIONS

CONCLUSIONS

Select orphan transaction uniformly for eviction #14626

nd) G-l MarcoFalke merged 1 commitinto bitcoin:master from sipa:201810_uniform_orphan_eviction 3 days ago

(54 Conversation 20 O- Commits 1 iRy Checks 0 Files changed 1

sipa commented on 31 Oct 2018 Member + (%)

The previous code was biased towards evicting transactions whose txid has a larger gap
(lexicographically) with the previous txid in the orphan pool.

CONCLUSIONS

/;—_—-

Select orphan transaction uniformly for eviction #14626

nd) G-l MarcoFalke merged 1 commitinto bitcoin:master from sipa:201810_uniform_orphan_eviction 3 days ago

(54 Conversation 20 -O- Commits 1 iRy Checks 0 Files changed 1

sipa commented on 31 Oct 2018 Member + ()

The previous code was biased towards evicting transactions whose txid has a larger gap
(lexicographically) with the previous txid in the orphan pool.

randomize GETDATA(tx request order and introduce bias
toward outbound #1459/

xdy Gl el sipa merged 1 commit into bitcoin:master from naumenkogs:master 10 days ago

(54 Conversation 115 -O- Commits 1 iR, Checks 0 Files changed 6
naumenkogs commented on 8 Dec 2018 « edited by MarcoFalke ~ Contributor + (&)

This code makes executing two particular (and potentially other) attacks harder.

InvBlock

CONCLUSIONS

Select orphan transaction uniformly for eviction #14626

Ixd . g -«M MarcoFalke merged 1 commit into bitcoin:master from sipa:20181@_uniform_orphan_eviction 3 days ago

& Conversation 20 O- Commits 1 @, Checks 0 Files changed 1

sipa commented on 31 Oct 2018 Member +(%)

The previous code was biased towards evicting transactions whose txid has a larger gap
(lexicographically) with the previous txid in the orphan pool.

randomize GETDATA(tx) request order and introduce bias
toward outbound #1489/

Iad) gl sipa merged 1 commitinto bitcoin:master from naumenkogs:master 10 days ago

(54 Conversation 115 -O- Commits 1 iR, Checks 0 Files changed 6
naumenkogs commented on 8 Dec 2018 « edited by MarcoFalke ~ Contributor ~ + (&) -

This code makes executing two particular (and potentially other) attacks harder.

InvBlock

CONCLUSIONS

Select orphan transaction uniformly for eviction #

nd) G-l MarcoFalke merged 1 commitinto bitcoin:master from sipa:201810_uniform_orphan_eviction 3 days ago

(&4 Conversation 20 O- Commits 1 B, Checks 0 Files changed 1

sipa commentgg.an

The previous @
(lexicographic

randomize G
toward outbc

VGl sipa merged

(54 Conversation 115 O- Commits 1 R, Checks 0 Files changed 6
naumenkogs commented on 8 Dec 2018 « edited by MarcoFalke ~ Contributor ~ +

This code makes executing two particular (and potentially other) attacks harder.

InvBlock

QUESTIONS

WHY TESTNET AND NO MAINNET?

* [xProbe is rather invasive: it empties the MapOrphanTransactions
pool of all nodes in the network every round

 We could not measure the implication that such behavior may have
had on the propagation of regular transactions

