Lightning watchtowers and why you should use them Sergi Delgado

LIGHTNING 101

CHANNEL LIFE CYCLE: OPENING A CHANNEL

- When two parties want to open a channel they lock-up funds in a 2-2 multisig contract (P2WSH)
- This lockup translates into a transaction on chain, known as funding transaction
- This is currently, mostly, single funded

from: A

- funding transaction
 - to: AB

CHANNEL LIFE CYCLE: USING A CHANNEL I

- Each time sats are sent trough the channel a new transaction is created (actually two)
- All this transactions spend from the funding transaction and are known as commitment transactions
- Each side of the channel has a non-symmetrical version of each commitment
- Commitment transaction are time-locked as follows: - The spender has to wait to spend his funds (CSV) - The other side of the channel can spend straightaway

CHANNEL LIFE CYCLE: USING A CHANNEL I

_	Each t	imo ooto	oro oont troi
	create		Commitment tra
-	All thi		\sim
	are kr	from: AB amount : x to_local amount: to_remo amount	to_local (A) s amount: y
-	Each		
	comm		to_remote (B) amount: x-y
-	Comr	APOV	
	- Th		
- The other side of the cha			

CHANNEL LIFE CYCLE: USING A CHANNEL II

- A new commitment transaction revokes the previous one - All revoked commitments are valid Bitcoin transactions - Only a single commitment transaction is valid on chain - Only the owners of the channel know which is the last
- commitment

commitment transactions

CHANNEL LIFE CYCLE: CLOSING A CHANNEL

- The last commitment transaction is used as the base to create a
 - transaction without time locks
- This transaction is known as closing transaction
- Both parties can spend straightaway from the closing transaction
- The closing transaction will be stored on chain

from: AB

closing transaction

to: A to: B

CHANNEL LIFE CYCLE: BREACHING A CHANNEL

- A side of the channel can try to spend an already revoked commitment (either "by mistake" or maliciously)
- This attempt is known as **channel breaching** and can result in the other side getting less funds than they deserve
- Only the channel owners can identify a revoked commitment, therefore **both sides may remain online**
- This is known as the always online assumption / requirement

CHANNEL LIFE CYCLE: PUNISHING MISBEHAVIOUR I

- If a channel is breached by one side, the other side can (and will) penalise the attempt
- A transaction will be created using the revocation data and spending from the channel breach
- This transaction is known as **penalty transaction** and it claims all funds of the channel instantly

penalty transaction

CHANNEL LIFE CYCLE: PUNISHING MISBEHAVIOUR II

But what if the owners of the channel were not the only ones who could react to channel breaches?

CHANNEL LIFE CYCLE: PUNISHING MISBEHAVIOUR II

But what if the owners of the channel were not the only ones who could react to channel breaches?

GENERAL CONCEPT

(**AKA Watchtowers**)?

User:

- Sends data to the server alongside a trigger condition

Server:

- Looks for triggers on a communication channel

What is the general paradigm behind third party watching systems

- If the a trigger is seen, perform an action with the provided data

[...] commitment_txid, penalty_tx, [...]

appointment

[...] commitment_txid, penalty_tx, [...]

appointment

[...] commitment_txid, penalty_tx, [...]

appointment

[...] commitment_txid, penalty_tx, [...]

appointment

appointment

BASIC WATCHTOWER PROTOCOL appointment [...] commitment_txid, penalty_tx, commitment_txid [...]

appointment

appointment

appointment

WHY USING A TOWER (OR WHY NOT)? I

- High availability -
- Data redundancy for your node

of the properties it provides (e.g. mobile nodes)

So, when may we need one and what are the alternatives?

A watchtower is a failsafe mechanism with, mainly, two properties:

- It is useful for all kind of nodes, but specially for those that lack some

WHY USING A TOWER (OR WHY NOT)? II

means:

- Power supply redundancy
- Internet service redundancy
- Data redundancy

We may **not need** a tower if we have a highly available node. That

This may be the case of a top tier routing node, **not the average node.** Even here, some types of towers may be worth considering.

WHY USING A TOWER (OR WHY NOT)? III

We may **need** a tower if we have:

- A non-highly available node (see previous slide) - A mobile phone node

average user is unlikely to run a highly available node.

Currently, the network is mostly run by techies and enthusiast, but the

WHY USING A TOWER (OR WHY NOT)? IV

Mobile nodes:

- Intermittent Internet access
- Lower bandwidth use w.r.t routing nodes
- Easier to lose data (phone breaks / gets stolen / ...)
- Node may not be always online
- Sporadically used (mainly when paying, can be offline for days)

WHY USING A TOWER (OR WHY NOT)? IV

Mobile nodes:

- Intermittent Int
- Lower bandwi
- Easier to lose
- Node may not
- Sporadically u

Background service

It seems that Eclair Mobile has not been able to run in background lately. Make sure that your phone does not aggressively optimize this application.

Some vendors like **Nokia**, **Xiaomi**, **Huawei** or **Samsung** run overzealous custom battery savers preventing non white-listed apps to run in background.

You can check <u>our FAQ</u> for more information.

OK

stolen / ...)

an be offline for days)

Types of towers

For every channel update:

- The penalty transaction is **encrypted** under a key derived from the commitment transaction id
- A locator is also derived from the commitment transaction id
- The tower receives the encrypted blob and the locator

Tadge Dryja - Unlinkable Outsourced Channel Monitoring - Scaling Bitcoin 2016

<u>User side</u>

<u>User side</u>

penalty_tx = 020000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

User side

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

User side

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33

16 MSB

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

User side

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

16 MSB → locator

User side

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33

cipher = CHACHA20POLY1305 sk = SHA256(commitment_txid) IV = 0

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

16 MSB \longrightarrow locator

User side

penalty_tx = 020000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33 16 MSB \longrightarrow locator

cipher = CHACHA20POLY1305 encrypt (penalty_tx, sk, IV) sk = SHA256(commitment_txid) IV = 0

User side

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a6800000000

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33 16 MSB \longrightarrow locator

cipher = CHACHA20POLY1305 encrypt (penalty_tx, sk, IV) sk = SHA256(commitment_txid) IV = 0

User side

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33 16 MSB locator

cipher = CHACHA20POLY1305 encrypt (penalty_tx, sk, IV) sk = SHA256(commitment_txid) IV = 0

penalty_tx = 020000000001010d8b7512b1f530338ca886...1f9624914fb8a680000000

User side

penalty_tx = 0200000000001010d8b7512b1f530338ca886...1f9624914fb8a6800000000

commitment_txid = 4a5e1e4baab89f3a32518...cc77ab2127b7afdeda33 16 MSB locator

cipher = CHACHA20POLY1305 encrypt (penalty_tx, sk, IV) sk = SHA256(commitment_txid) IV = 0

SEND TO THE TOWER

Tower side

Tower side

for every transaction_id in every block

locator = 16 MSB transaction_id

- Tower side
- for every transaction_id in every block
 - **locator = 16 MSB transaction id**
 - if locator in appointments:
 - sk = SHA256(transaction_id)
 - IV = 0

- Tower side
- for every transaction_id in every block
 - **locator = 16 MSB transaction_id**
 - if locator in appointments:
 - sk = SHA256(transaction_id)
 - IV = 0

decrypt (encrypted blob, sk, IV)

- Tower side
- for every transaction_id in every block
 - **locator = 16 MSB transaction id**
 - if **locator** in appointments:
 - sk = SHA256(transaction_id)
 - IV = 0

decrypt (encrypted blob, sk, IV)

Pros:

- Privacy preserving
- towers)
- No infrastructure needed for the user

Cons:

- Design is rather complex
- O(N) storage
- Can be easily spammed (altruistic vs non-altruistic)

Can give service to the whole network (with one or multiple

PERSONAL USE ONLY TOWER I

If the tower is for personal use only, the design can be highly simplified:

- Privacy is not a concern (at least not at the same level)
- Data may not need to be encrypted -
- Most of the spam protections included in the design can be lifted
- Storage can be O(1)

PERSONAL USE ONLY TOWER II

Examples:

- Channel ids can be shared with the tower, so no more need for locators (only renovation data) (**O(N) but simpler design**) - Even revocation keys could be shared, so the storage is drastically reduced (**O(1) but riskier**)

proposing / pursuing them though (h/t Antoine Riard)

Haven't seen any tower like this in the wild. I've seen some devs

PERKS OF USING ANY KIND OF TOWER I

CSV in to_local outputs COULD be reduced:

CS

c-lightning

LND

Eclair

rust-lightning

SV (default)	~ time	
144	1D	
44-2016	1D - 2W	
720	5D	
144	1D	

PERKS OF USING ANY KIND OF TOWER II

Unresponsive peers. If you have to close unilaterally you are forced to wait the CSV delay.

However

It will be unsafe to set a too low CSV if no-one is watching your channels

PERKS OF USING ANY KIND OF TOWER III

Having a too big CSV may hurt UX

Finally

the tower to respond

This is not tradeoff free. Depending on the setup you may be trusting

SPECIAL THANKS TO MY SPONSORS

- Square Crypto

8 sponsors are funding sr-gi's work.

