
tBTC Bitcoin Audit

1. Executive Summary

In May 2020, I was put in touch with Thesis to conduct a security assessment of tBTC,
after the system was put on a 10-day emergency pause due to an unnoticed bug.

The main scope of the audit was to cover the Bitcoin related bits of tBTC, as well as the
libraries it is depending upon (Summa bitcoin-spv and Summa relays). The audit started
in May 25th 2020 and was conducted by me (Sergi Delgado Segura) over the course of
1.5 person-week.

1. Executive Summary	 1

1.1 Scope	 2

1.2 Objectives	 2

2. Issues	 2

2.1 requestRedemption accepts invalid _redeemerOutputScripts	 2

2.2 txOutputVector expected to have less than 252 elements but not enforced	 3

2.3 latestRedemptionFee incorrectly set after a fee bump.	 4

2.4 PERMITTED_FEE_BUMPS is never used	 5

2.5 Naming utxoSize	 6

2.6 validateHeaderWork is never used (bitcoin-spv)	 6

3. Additional checks	 7

3.1 Improve docs of bitcoin-spv contracts	 7

3.2 Signature forgery in keep-network/keep-ecdsa	 7

Audit period 25-05-2020 / 31-05-2020

Auditor Sergi Delgado Segura

https://github.com/keep-network/tbtc
https://blog.keep.network/details-of-the-tbtc-deposit-pause-on-may-18-2020-38d7dd555663
https://github.com/keep-network/tbtc/pull/636
https://github.com/summa-tx/bitcoin-spv
https://github.com/summa-tx/relays

1.1 Scope

The scope covered the Bitcoin code related to Deposit and Redemption located in the
following repositories and provided commits:

Given the limited timeframe, for the dependant libraries, the scope was set to prioritise
the bits of code being directly used by tBTC.

Finally, keep-network/keep-ecdsa was also set in scope provided enough time was left to
give it a peak once the rest of the code was checked.

1.2 Objectives

The objectives of the audit were to check how tBTC interacted with Bitcoin in the Deposit

and Redemption phases. In order to do that, the first goal was set to understand the
system as a whole, and the interactions that lead to the specific functionality. Once that
was covered, special care was taken to check how Bitcoin transaction were crafted and
parsed, given that what forced this audit to happen was precisely an error in this regard.

2. Issues

This section covers the issues found during the audit, including severity and suggested
fixes. Issues are arranged by severity.

2.1 requestRedemption accepts invalid _redeemerOutputScripts

Severity

keep-network/tbtc 100e5aae60aad209b0d3c6d495438d2b5b270fd3

summa-tx/bitcoin-spv 327f4f49c2e5a823406aa1e0ef384f30cfd8f768

summa-tx/relay 0031068c9a2851ddbefd07a00c1c93e22720955b

Critical

https://github.com/keep-network/keep-ecdsa
https://github.com/keep-network/tbtc/tree/100e5aae60aad209b0d3c6d495438d2b5b270fd3
https://github.com/summa-tx/bitcoin-spv/tree/327f4f49c2e5a823406aa1e0ef384f30cfd8f768
https://github.com/summa-tx/relays/tree/0031068c9a2851ddbefd07a00c1c93e22720955b

Description

During the redemption process, the redeemer provides an outputScript where to

receive the initial deposit back (minus fees if applicable). Only a valid script of the four

supported types (P2PKH, P2SH, P2WPKH and P2WSH) should be accepted. However, while

the type of the provided script is checked (the script looks like a valid one), the actual
content is not properly enforced. Therefore, script looking like valid, but being internally
malformed will pass the validity checks. A redeemer providing this kind of output script
will prevent the signers to succeed on the redemption process, and will eventually be able
to claim the signers deposit. A malicious redeemer can make a profit by doing so, given
that the signer is overcollateralized.

The main problem of this issue lies on the interaction between requestRedemption and

BCUtils.extractHash. The latter is expecting sanitised inputs, while the former is not
providing them.

Extended description

This issue affects both keep-network/tbtc and summa-tx/bitcoin-spv.

https://github.com/keep-network/tbtc/issues/658

https://github.com/summa-tx/bitcoin-spv/issues/161

Suggested fix
Either run sanity checks on the outputScript passed to the contract, or run them on
BCUtils.extractHash.

2.2 txOutputVector expected to have less than 252 elements but not

enforced

Severity

Major

https://github.com/summa-tx/bitcoin-spv/blob/master/solidity/contracts/BTCUtils.sol#L406
https://github.com/keep-network/tbtc/issues/658
https://github.com/summa-tx/bitcoin-spv/issues/161
https://github.com/summa-tx/bitcoin-spv/blob/master/solidity/contracts/BTCUtils.sol#L406

Description

During the funding phase the depositor is requested to make a deposit to the signers
Bitcoin address in order to end up receiving the corresponding amount of tbtc. The
funding output index is restricted to be a uint8	by the contract, meaning that any

transaction funding the deposit from an output index higher than 255 cannot be proved.
While this is a current restriction of the design, the actual limit is in 252	(0xFC), given the

VARINT encoding of output index in transactions. This restriction is never enforced by the
contract, meaning that a transaction funded by an output in the	253,	254	or	255 index

will not be provable either, implying a loss of funds by the depositor.

This is specially relevant when the deposit comes from a wallet not directly controlled by
the user, as may be the case of an exchange that batches withdraws in a transaction with
multiple outputs.

Extended description
https://github.com/keep-network/tbtc/issues/647

Suggested fix
The ideal fix would be accepting outputs from any index. However, this is unfeasible given
that output vectors are parsed by the contract so the correctness of the data can be
verified (in terms of valid transaction structure), so parsing too many outputs would
exceed the gas limit. Therefore, the only viable solution is to properly inform the user of
the risks of entering the system using a wallet that they do not fully control, and
discouraging so (the user should be aware that a transaction funding the system using an
output over index X will imply direct loss of funds).

2.3 latestRedemptionFee incorrectly set after a fee bump.

Severity

Major

https://github.com/keep-network/tbtc/issues/647

Description

Notice that this issue was discovered by ToB before me.

During the redemption process a signer can request a fee bump after
INCREASE_FEE_TIMER as a claim that the transaction could not make it to a block with

the current fee rate. After the first fee bump, the latestRedemptionFee is incorrectly set

to the _newOutputValue	meaning that, from that point on, a transaction moving a

substantial amount of funds to fees (potentially all) will pass redemption checks. This
hypothetical transaction will not be approved by the system to be signed though.

If all signers collude and also collude with a miner, they can claim the eth collateral back
and swipe the deposit to fees, taking effectively all the funds back.

The severity of this issue may vary depending on if it is assessed by implications or
likelihood. By running this attack the signers risk losing all the funds if the all-fee-
transaction is seen by any party monitoring the calls to the contract and the Bitcoin
blockchain, given that the all-fee-transaction is not an authorised data to be signed.
Therefore, an attacker would risk loosing all the funds for a
TX_PROOF_DIFFICULTY_FACTOR time period (6 blocks) for a ~66% profit on succeed.

Extended description
https://github.com/keep-network/tbtc/issues/652

Suggested fix
Set the properly on fee bumps.

2.4 PERMITTED_FEE_BUMPS is never used

Severity

Description
PERMITTED_FEE_BUMPS is supposed to limit the times the signers are allowed to bump the

fee for a transaction. This is a dead code path left from previous versions of the code.

Minor

https://github.com/keep-network/tbtc/issues/652

Extended description
https://github.com/keep-network/tbtc/issues/665

Suggested fix
Remove from the codebase.

2.5 Naming utxoSize

Severity

Description

The UTXO value is referred throughout the codebase as utxoSize. Given that a UTXO is

a struct containing both a script and a value, calling it utxoSize can lead to

misconceptions that may end up causing bugs.

Extended description
https://github.com/keep-network/tbtc/issues/660

Suggested fix
Rename utxoSize to utxoValue.

2.6 validateHeaderWork is never used (bitcoin-spv)

Severity

Description
validateHeaderWork is checking the the amount of work in a header is above the target.

However, this function is never used, and it is replaced by the same functionality in other
parts of the code.

Minor

Minor

https://github.com/keep-network/tbtc/issues/665
https://github.com/keep-network/tbtc/issues/660

Extended description
https://github.com/summa-tx/bitcoin-spv/issues/169

Suggested fix
Remove from the codebase.

3. Additional checks

Additional checks that may have not direct impact in the codebase.

3.1 Improve docs of bitcoin-spv contracts

Some docs of bitcoin-spv were outdated / wrongly set. This could have confuse devs
while trying to use them leading to potential bugs. The spotted errors have been
corrected and submitted as pull requests:

https://github.com/summa-tx/bitcoin-spv/pull/159

https://github.com/summa-tx/bitcoin-spv/pull/166

3.2 Signature forgery in keep-network/keep-ecdsa

keep-ecdsa has been checked against the usual suspects for signature forgery, given that
tBTC accepts proof of fraud for signatures over non-authorised digests.

No apparent issue has been found in this regard.

https://github.com/summa-tx/bitcoin-spv/issues/169
https://github.com/summa-tx/bitcoin-spv/pull/159
https://github.com/summa-tx/bitcoin-spv/pull/166
https://albacore.io/faketoshi

	1. Executive Summary
	2. Issues
	3. Additional checks

